ESAB – Your Partner in Advanced Welding & Cutting Technology

Overview of Hybrid Laser Welding and Advanced Lightweight Structures
Overview

- What is Hybrid Laser Arc Welding (HLAW)?
- How Does HLAW Compare to:
 - Conventional welding?
 - Autogenous laser welding?
- Advanced Laser Welded Structures
- Hybrid Laser Welding Applications
- Application Examples
What is Hybrid Laser Welding?

Laser
- Small spot size
- Very high energy density
- Low total heat input
- Deep penetration
- High welding speed
 - Stabilizes GMAW Arc

Gas Metal Arc
- Added energy to melt wire
- Broadened fusion zone at surface
- Slower weld cooling
- Improves laser coupling

Wire Filler
- Allows control of metallurgy
- Improves gap tolerance
- Removes some contaminants
How does HLAW Compare to Conventional Welding?

- **Conventional MIG/MAG:**
 - Shallow penetration
 - Wide weld bead

- **Autogenous Laser**
 - Deep penetration
 - Narrow fusion zone

- **Hybrid Laser**
 - Deep penetration
 - Wide weld bead
What is Hybrid Laser Welding?

- **Weld Characteristics**
 - Smooth surface contours
 - Small heat affected zone
 - Fine grain structures
 - Low base metal dilution
 - Very high weld toughness

- **Process Characteristics**
 - High Productivity
 - Low Consumable Costs
 - Improved Tolerance of Gaps, Edge Quality, Contaminant
How does HLAW Compare to Conventional Welding?

- **Deeper Penetration**
 - Multiple passes replaced with one

- **Lower Heat Input**
 - 80-90% reduction compared to MIG/SAW

- **Low Distortion/Shrinkage**
 - Very small HAZ
 - Much lower residual stress

- **High Weld Toughness and Strength**
How does H LAW Compare to Conventional Welding?

- HLAW Procedures Show Low H2 Pickup
 - Significantly less dissolved H2 in weld metal
 - Total H2 proportional to wire feed speed
 - Not affected by laser power

- Results (ml/100gm)
 - Laser-leading:
 - HLAW (1.0) vs. GMAW (2.5)—60% reduction in H2
 - GMAW-leading:
 - HLAW (1.8) vs. GMAW (2.5)—28% reduction in H2
How does HLAW Compare to Conventional Welding?

- **Higher Productivity**
 - 3-10 X faster than GMAW or SAW
 - Steel: 2-5m/min
 - Aluminum: 6-8m/min

- **Low Labor Content**
 - Fully automated operation

- **Low Operating Costs**
 - Less than half that of GMAW
ESAB’s Approach to Hybrid Laser Welding

- **GMAW Power Supply**
- **Disk Laser**
- **Delivery Fiber**
- **Welding Wire**
- **Seam Tracking System**
- **Floating Adaptive Weld Head**
ESAB’s Approach to Hybrid Laser Welding

- Adaptive Welding Process Control and Quality Assurance System
 - Look Ahead - joint tracking & measuring
 - Look At - weld process monitoring
 - Look Behind - weld geometry measurement and defect identification
 - 100% automated visual inspection and quality documentation
Non-Adaptive Control System Effects Butt Welds

- **Constant Parameters on Variable 0-1mm Gap**
 1. Use parameters optimized for 1.0mm gap:
 - Excessive bead height at 0 gap
 - Incomplete penetration at 0 gap
 2. Use parameters optimized for 0.0mm gap:
 - Insufficient fill height at 1mm gap
 - Excessive undercut at 1mm gap
Adaptive Control System Effects
Butt Welds

- Varying Gap: 0.0mm to 1.0mm
- Adaptive Controls results in:
 - Uniform bead shape
 - Uniform penetration
 - Very good weld quality over the entire weld length
ESAB’s Adaptive Control System

- Simple, Easy to Use HMI
- Fast, Real-Time 5th Generation Controls
- Feedback for Control and Reporting
Effect of Adaptive Control

- Optimized “Control vs. Constraint” Equation
 - Reduces total cost of implementing laser welding
 - Maximizes productivity
 - Improves economics of entire production process

![Graph showing process cost vs. max joint tolerance](image)

- Autogenous Laser (0-0.1mm)
- Hlaw with No Control (0-0.3mm)
- ESAB’s Adaptive Hlaw (0-1.5mm)
Effect of Adaptive Control

- 5 X Greater Process Window with Adaptive Control Enables:
 - Larger Parts
 - Joints with Higher Variation
ESAB Hybrid Laser Process Package for Integrators and OEM’s

- Complete Welding Head
 - Optics
 - Torch
 - Sensors
- Aristo GMAW Power Supply
- Laser Seam Tracking
- Adaptive Process Control System
- User-friendly HMI
- Weld Inspection and Quality Assurance
- ESAB Assistance with:
 - Sales support & materials
 - Demo/ proof-of-concept
 - Process development and optimization
 - Weld qualification
 - Customer financing
New HLAW Product Line

- **New Applications Development Centers**
 - Gothenburg, Sweden- R&D system
 - Laxa, Sweden- large format applications development
 - Florence, USA- large format applications development

- **New Resources**
 - Global product management
 - New sales people for Europe and US
 - New applications engineers in Florence, Laxa and GBG

- **New Marketing and Sales Strategy**
 - New website, literature, videos
 - New sales tools
ESAB’s New HLAW Product Line
ESAB’s New HLAW Product Line
Advanced Lightweight Laser Welded Structures

New Approaches to Design Enabled by Laser Welding
Advanced Structures

- Precision, Laser Fabricated Shapes for US Navy
 - ¼ to 1/10th the tolerance of ASTM-A6 standard for hot-rolled shapes
 - Available in any steel grade and yield strength
 - 20% to 50% lighter than hot rolled beams
 - Easier and cheaper (~25%) to process, fit and weld into structures
Advanced Structures

- New Structures
 - Thin Materials from Coil Stock
 - Laser Fused into Hollow, Cellular Structures

- Advantages:
 - High precision
 - Low mass (50%)
 - High strength/weight ratios

Courtesy of Meyer Werft
Light, Rigid, Strong and Flat

<table>
<thead>
<tr>
<th>Depth = t</th>
<th>Depth = 2*t</th>
<th>Depth = 4*t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Base Plate (t)</th>
<th>Sandwich (h=2*t)</th>
<th>Sandwich (h=4*t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Strength</td>
<td>1</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Stiffness</td>
<td>1</td>
<td>12</td>
<td>48</td>
</tr>
<tr>
<td>Flatness</td>
<td>1-4” per 56’</td>
<td>0.2” per 56’</td>
<td>0.2” per 56’</td>
</tr>
</tbody>
</table>

Total Structural Weight Reduction up to 50%
Low Distortion

Courtesy of Meyer Werft
Hybrid Laser Welding Applications

Where is Hybrid Laser Welding Being Used?
Target Markets for Advanced Structures

- Traditionally “Heavy” Industries
 - Marine
 - Shipbuilding
 - Offshore
 - Transportation
 - Rail Cars & Truck Trailers
 - Automotive
 - Mobile Equipment
 - Civil Infrastructure
 - Bridge Decks
 - Superstructures
 - Commercial Construction
 - Structural Systems
 - Panel Systems
Shipbuilding and Marine

- **Applications**
 - Panel line plate butt welding
 - Panel line stiffener welding
 - Stiffener fab.

- **European HLAW**
 - Meyer Werft
 - Odense Shipyard
 - Blohm & Voss
 - Warnow Werft
Civil Infrastructure

- Bridge Decks and Beams
Transportation

- Intermodal Containers
- Truck Trailers
- Hopper and Gondola Rail Cars
Mobile Equipment

- “Light Structures”
- Chassis
- Booms and Arms
- Dump Bodies
- *Not suitable for use on children
Automotive

- Suspension Components
- Crash-critical structures
- Axles
- Engine Cradles
- Exhaust Components
- Truck Frames
ESAB’s Avenger HLx Welding Video
Robotic Welding Cell - US Apps Lab
Application Examples

(...the ones we can tell you about.)
Application Example

- **CVN-78**
 - Ship now designed with 700,000 ft of fabricated shapes replacing hot rolled beams
 - HLAW beam production system now operational
Application Example

- **Redesign of Ore Car**
 - Redesign car to replace side panels, floors and supporting structure
 - Objectives:
 - Reduce weight
 - Increase volume
 - Reduce material cost
 - Reduce labor content
 - Maintain structural strength and stiffness
 - Achieved:
 - 25% reduction in weight
 - 20% increase in volume
 - Reduced mfg. cost
Application Example

- **Meyer Werft Shipyard**
 - Converted from GMAW and SAW welding of stiffeners on bulkheads and decks
 - Reported 30% reduction in ship construction cycle time due to improved structural accuracy and flatness

Courtesy of Meyer Werft
Application Example

- **DDG-1000**
 - First surface combatant to use laser welded panels in critical structures
 - Laser welded stainless sandwich panels beat composite panels and aluminum panels in:
 - Weight
 - Stiffness
 - Acquisition cost
 - Lifecycle cost
Conclusions

- Hybrid Laser Welding is Capable of Welding Large, Traditional Structures with Required Quality

- ESAB’s Adaptive Controls Broaden HLAW Process Window by 5 Times Reducing Implementation Cost

- HLAW Enables New Design Approaches Which Reduce Weight and Cost

- Together, These Factors are Improving Productivity and Reducing Cost in Applications Throughout Industry

- Visit us at www.esab.com/hlaw